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A closed tube containing a BZT-fluid is driven by an applied velocity near and 
at resonant frequencies. A small-rate theory is shown to predict the existence of 
stable periodic expansion and compression shocks in a resonant frequency band. The 
significant effects of wave interaction and thermoviscous damping are demonstrated. 

1. Introduction 
There is a long history of studies dealing with the effects of mixed nonlinearity 

on one-dimensional waves with and without phase transition (for overviews see for 
example Kutateladze, Nakoryakov & Borisov 1987; Kluwick 1991 ; Dunn, Fosdick 
& Slemrod 1993). Probably the most exciting prediction of these studies is the 
existence of negative shocks, e.g. shocks across which the normal stress decreases. 
The possibility that negative shocks may form in real single-phase fluids seems to 
have been recognized first by Bethe (1942) and independently by Zel'dovich (1946) 
who also considered shock-induced phase changes. Here we are mainly concerned 
with propagation phenomena in single-phase equilibrium flows. The steepening 
characteristics of waves then are given by the nonlinearity parameter or fundamental 
derivative 

r = - -  - ;a;;) I / .  
Here p, a and s denote, respectively, the density, the speed of sound and the entropy. 

Classical gasdynamics is based on the assumption of positive nonlinearity, e.g. that 
f is a strictly positive quantity as in the case of perfect gases. However if, for example, 
f changes sign on a transition line in the pressure-specific volume diagram, then 
the fluid exhibits mixed nonlinearity and the richness of the resulting wave dynamics 
increases significantly. So far two mechanisms which may cause to change sign 
in the neighbourhood of the thermodynamic critical point have been identified. The 
first is associated with the critical point singularity of the isochoric heat capacity 
c,. The second rests on the result following from standard thermodynamics that 
isentropes and isotherms differ only slightly if the heat capacities of the fluid under 
consideration are large in general, e.g. if the fluid consists of complex molecules, see 
Thompson (1971), Thompson & Lambrakis (1973). In recognition of the significance 
of the studies by Bethe, Zel'dovich and Thompson, fluids of this latter type are now 
commonly referred to as BZT-fluids. 

Thermodynamic considerations also indicate that fluids with large heat capacities 
may be ideal working fluids for organic Rankine cycles (Curran 1981; Zorner & 
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Blumenberg 1989). Studies dealing with the flow properties of such fluids have 
added further support to this prediction (Cramer & Best 1991; Cramer & Tarkenton, 
Kluwick 1993; Cramer & Fry 1993). As a result of these studies gasdynamic flows of 
BZT-fluids in the dense gas regime are fairly well understood theoretically. 

Unfortunately, difficulties with the required high temperature and pressure levels 
have so far prevented the experimental verification of most theoretical results, in 
particular the existence of single-phase expansion shocks. Experiments carried out 
by Borisov et al. (1983) showing the formation of stable rarefaction waves clearly 
capture effects of negative nonlinearity caused by the critical point singularity of c,. 
However, in these experiments the flow medium, Freon 13, appears to have entered 
the two-phase region. To the authors' knowledge corresponding experiments with 
single-phase BZT-fluids have not been performed yet. 

Propagating shocks of (almost) constant strength can be generated in at least two 
ways, using shock tubes or resonance tubes. Shock tube experiments in the dense 
gas regime require highly sophisticated techniques and produce a discontinuous set 
of data but have the advantage of a relatively simple theoretical basis. Experiments 
in resonance tubes are expected to be much easier and by controlling the piston 
frequency it should be possible to vary the shock strength continuously over the 
interesting range of thermodynamic states. Moreover, owing to the smallness of the 
nonlinearity parameter in the neighbourhood of the transition line f = 0 relatively 
strong shocks can, in principle, be generated by applying moderate piston amplitudes. 
However, the theoretical interpretation of the results requires the investigation of 
interacting oppositely travelling waves and this is significantly more complicated than 
in the case of unidirectional waves occurring in shock tubes. Existing work deals with 
media having strictly positive nonlinearity only (Betchov 1958; Chester 1964, 1981 ; 
Jimenez 1973). In the present study the analysis is extended to include the effects of 
negative and mixed nonlinearity. This is certainly an interesting task in itself but it 
is hoped that the results will stimulate experimental research on resonant oscillations 
in the dense gas regime with the aim to conclusively show the existence of negative 
shock waves in single-phase BZT-fluids. 

E. A.  Cox and A .  Kluwick 

2. Problem formulation 
A column of gas is contained in a pipe of length L. One end of the pipe is closed, 

and an oscillating piston is located at the other end. The pressure and density of 
the gas are measured from and non-dimensionalized with respect to the reference 
state ( p o , p , )  with associated sound speed a,. The reference pressure is taken to be 
the mean of the time-periodic gas oscillation. We formulate the problem in terms of 
the non-dimensional variables aov, p,a?p, pop, Lx and La;'t where x is a Lagrangian 
coordinate labelling a material particle which in the reference state is a distance x 
from the closed end of the pipe. 

The equations of momentum and mass conservation in Lagrangian form are 
dv dp - + - y o  
at ax 

and 

where pressure disturbances, particle velocity and density disturbances are denoted 
by the variables p,v and p respectively. 
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The above equations must be supplemented by appropriate one-dimensional shock 
jump conditions. If a shock front envelopes at time t a particle with Lagrangian 
coordinate x = X ( t )  then the Lagrangian shock speed f u  satisfies 

where u is positive and the sign of the term f u  indicates the direction of propagation. 
A jump in a variable 4 at the passage of a shock is indicated by [4] = &, - &, where 
the subscripts a, b refer to conditions after and before a shock. For the problem under 
consideration the entropy jump across weak shocks is fourth order in the pressure 
jump and entropy changes may be assumed negligible (see Cramer & Kluwick 1984). 

Long-time-periodic solutions to equations (2.1)-(2.3) are sought subject to appro- 
priate boundary conditions. At the closed end of the pipe, x = 0, we impose the 
condition 

At x = 1, we assume a periodic piston displacement of the form p h ( o t )  where p( 4 1) 
is the ratio of piston amplitude to pipe length and o is the non-dimensional piston 
frequency, i.e. h ( 4  + 1) = h(4) .  Therefore on x = 1 we have 

(2-5) 

u(0, t )  = 0. (2.4) 

u( 1, t )  = poh’(o t )  . 

Equations (2.1) and (2.2) can be written in the characteristic form 

and 
dx - 
dt - + a ( l  + p )  = 0, 

where the sound speed is a = (dp/dp)1’2 . The upper and lower signs define right- 
running and left-running characteristics p = constant and (x = constant respectively. 

The dependence of the sound speed a on the density p can readily be expressed in 
terms of a Taylor expansion about the reference sound speed a,. This yields 

a ( p )  = 1 + (r - i lP + ; ( A  + 2lP2 + 0 ( ~ 3 ) ,  (2.8) 

where the nonlinear coefficients r and A are given by 

(2.9) 

Here is the fundamental derivative, discussed in $1 . In order that the periodic 
reference state lies in the neighbourhood of the transition line f ( po ,s , )  = 0 we have 
assumed in (2.8) that r = O(p) = o( 1) and A = O( 1). 

Insertion of (2.8) into the slope conditions (2.7) yields 

dx 
dt f - = 1 + (rp + +p2) + o ( ~ ~ )  (2.10) 

and we note that nonlinear effects only enter at O(p2). The problem remains now to 
integrate (2.6) and (2.10). 

If the characteristic variables (x and p are considered as independent variables then 
as shown by Lin (1954) and Fox (1955) secular growth terms in the solution can be 
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avoided. The appropriate expansions for u and p are then 

E. A .  Cox and A .  Kluwick 

P ;  €1 = EPl(C4 P )  + f 2 P 2 b ,  P )  + . . . 
with the x, t coordinates expanded as 

(2.12) 

44 P ;  €1 = xo(4 P )  + t-Xl(U, P )  + e2x2(a, P )  + . . . , (2.13) 

t(a, P ; .) = to(% 8) + f t l ( M ,  P )  + f 2 t 2 ( E ?  P )  + . . . (2.14) 
The perturbation parameter E is the Mach number of the gas and its relationship to 
the imposed piston velocity will be determined later as part of the solution. 

Substituting the expansions (2.8), (2.1 l), (2.12) into the compatibility conditions 
(2.6) and integrating one obtains 

(2.15) 

and 

- ~ E ~ ( c x )  = u - -dS = E ( U ~  - p1) + 0(e2) ,  (2.16) 

where €f(P) and E g ( c l )  are the Riemann invariants for the problem, to be determined 
from the boundary conditions (2.4) and (2.5). 

.I’ lYs 

The slope conditions (2.10) are then approximated by 

(2.17) 

where r = e r ,  F = O( 1) and pI 

(2.3). We require for right-running shocks a Lagrangian shock speed given by 

f ( P )  + g(a). 
Discontinuities when they form in the flow field are subject to the jump conditions 

(2.18) u = 1 + EU1 + €2242 + O ( E 3 )  

and an expansion for p ( p )  determined from (2.8), namely 

p = P + (r - i)p2 + ; ( A  + 3)p3 + 0 ( € 4 ) ,  (2.19) 

where p is given by (2.12). We have corresponding to (2.3) then the jump conditions 

(2.20) 
(2.21) 
(2.22) 

From (2.16) and (2.20) we see that the left-running Riemann invariant g(a) is con- 
tinuous across right-running shock waves. Equation (2.21) requires that u1 = 0 and 
from (2.18) and (2.22) u can be written as 

(2.23) 2 2r [P:I A [P31 u 1 + € u2 = 1 + € -- + E2-  , p1 = f ( P )  + g(a). 2 [Pll 6 [Pll 
In the case of a left-running shock , the shock speed is -u. 

The problem is now the integration of (2.17) giving characteristic curves along 
which the Riemann invariants ef and E g  propagate, where f and g are determined 
from imposing boundary conditions (2.4) and (2.5). The motion of any discontinuity 
in the flow field is calculated using (2.23). The conditions under which realistic shock 
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discontinuities can be inserted is more complicated than for classical weak shock 
theories. We simply summarize the results obtained by Cramer & Kluwick (1984) for 
the case of unidirectional waves with the obvious extension made here to two-wave 
families. 

When A > 0 an existing discontinuity must satisfy the speed ordering condition 

(2.24) 

where dx/dt(, and dx/dt(b are evaluated for p1 = p1, and p1 = plh and the subscripts 
a and b refer to conditions before and after a shock. 

When A < 0 the speed ordering condition is 

dx dx 
- > u > -  . 
dt 1 0  dt / h  

(2.25) 

Equations (2.24), (2.25) are presented here as admissibility conditions for shock 
propagation. It must be recognized that in recent years the question of shock 
admissibility for materials with non-convex equations of state has been the subject 
of extensive study both from an applied and a theoretical perspective. That non- 
convexity arises here can readily be seen on writing r in the form 

(2.26) 

When TO = O ( E )  and A = 0(1) the wave speed ordering condition given by (2.24), 
(2.25) is necessary and sufficient to exclude inadmissible shocks. This is not always 
the case. A more general admissibility criterion was developed in Liu (1976a,b) in 
terms of an entropy condition which ensures the existence of a viscous shock layer 
structure. This entropy condition can be stated in terms of the Rayleigh line connect- 
ing two thermodynamic states lying entirely above (compressive shock) or entirely 
below (expansion shock) the shock adiabat. In Cramer & Crickenberger (1991) this 
criterion is used in a description of shocks in dense gases, and in Kluwick (1993), 
Kluwick & Scheichl (1996) in the problem of transonic nozzle flow in dense gases. 
These results for dense gases assume that now r = O(c2)  and A = O(E)  and a 
wave description involves a third nonlinear parameter proportional to d 2 r  l ap2 .  The 
analysis of this present paper could forseeably be extended to a consideration of this 
case. 

The permissible equalities in (2.24), (2.25) represent sonic shocks in the gas flow, a 
possibility excluded from classical weak shock theory. It is possible to interpret (2.24), 
(2.25) in terms of permissible density jumps. Following Cramer & Kluwick (1984) it 
is first more convenient to scale 

(2.27) 

For A > 0, permissible jumps are when blo and bl, lie between the lines phlh = PI, 
and j?,b = and 
bIb = -(2bI0 + 3 ) .  This can be contrasted with a classical gas where jump strength 
is not restricted, only the sign of the jump must satisfy r [ p l ]  > 0. An obvious 
conclusion is that if an imposed discontinuity in the gas flow exceeds a critical 
strength (corresponding to sonic conditions) then the discontinuity will disintegrate 
into a sonic shock and wave fan combination. A similar analysis can be applied to 

+ 3). For A < 0, bl, and j+, must lie between the lines blb = 
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an imposed wave fan discontinuity. The wave fan will be instantaneously unstable if 
density values in the wave fan lie in both 

b1 > -1 (2.28) 

and 
<-1 (2.29) 

regions and a shock-fan combination will form. This is interpreted as a limitation on 
the strength of the wave fan. 

We now proceed to integrate (2.17) using expansions (2.11)-(2.14). If a and P are 
parameterized by the condition that a = P = a t  on x = 0 then (2.17) implies that 
to 0 ( € 3 )  

(2.30) 

(2.31) 

The evolution o f f  and g on the closed boundary x = 0 is described by a nonlinear 
functional equation - a mapping of the time taken for a wavelet leaving x = 0 to 
return to the boundary with the associated change in the signal carried by the wavelet. 

Consider a wave which leaves x = 0 at t = a/w and returns to x = 0 at time 
t = P/w, having made a complete traversal of the pipe. We assume the wave leaves 
with the signal value f ( P )  = g(P) and arrives back with g(a); then using (2.30), (2.31) 
we have 

- 
r a  

(2.32) 

The variation in the Riemann invariant eg after the wave makes one complete traverse 
of the tube is given by 

(2.33) 

on using (2.15), (2.16) and the boundary conditions (2.4), (2.5), where tl is the arrival 
time of the wave at the boundary x = 1. It should be emphasized that equations 
(2.32) and (2.33) describe the evolution of the wave form on the boundary x = 0: 
at this stage no periodicity condition is imposed. With zero values for g given on 
an initial interval then the evolution from an undisturbed state to a final periodic 
state could be examined along similar lines to Seymour & Mortell (1985). The initial 

P €g(a) - .g(P) = -pWh' (Wt l )  , tl = - + 1 + O ( 2 )  
W 



Resonant gas oscillations 257 

behaviour of the signal would be represented by the linear functional equation 

(2.34) 

with the Mach number of the gas E = p. Equation (2.34), describing the initial 
growth of the signal, has no bounded solutions with unit period when o = a, = 
irn (rn = 1,2,3.. .). These are the linear resonant frequencies. In this paper we are 
interested in bounded periodic solutions with unit period for operating frequencies in 
the neighbourhood of W, given by 

(2.35) 

The frequency detuning is 0(c2w),  chosen to appear in (2.32) at the same order as 
the nonlinearity. 

After a long time the signal settles down to a periodic state and the difference 
g(a) - g(P)  in (2.33) is, from (2.32), 0(f2o). This gives a Mach number for the long 
time behaviour of E = representing a growth in the signal from O(p) initially to 
~ ( p l ’ ~ )  finally. 

Similar to the perfect gas case this estimate can be derived directly from an energy 
balance assuming that the steady-state periodic solution contains shock disconti- 
nuities. The energy dissipated by a shock per unit time poT~,ao[s] then has to be 
supplied by the work of the piston per unit time poaipv. Owing to the assumption 
r = O ( E )  adopted here, [ s ] [ ~ , ~  = O(f4) which together with p = O(6))  and u = O(p) 
immediately yields E = O(p1’3)  as before. In passing note that this order of magnitude 
relationship holding for resonant dense gas oscillations in closed tubes is of the same 
form as the corresponding result for resonating perfect gas oscillations in open tubes 
(Jimenez 1973). Consequently, the power required to drive the piston is of comparable 
magnitude in both cases. 

We can simplify (2.32) and (2.33) by retaining only terms to 0(f2o) with the 
approximation a - P N 2 0  in the e2 terms of (2.32). Further, the fact that u and p 
have zero mean over one cycle means that 

w = om( 1 + f 2 A ) ,  A = O( 1). 

f (s)ds = i”m g(s)ds = 0 iBim (2.36) 

The functional equation (2.32), (2.33) then reduces to 

g(a) = g(P) - f2Wh’(P + ;4, (2.37) 

(2.38) 

6 = A - -  l+,g’(s)ds  . (2.39) 

The integral term in (2.39) represents a shift in the linear resonant frequency due 
to the local interaction of oppositely travelling waves. Wave interaction increases 
( A  < 0) or decreases ( A  > 0) the travel time of the wavelets and consequently alters 
the resonant frequency. 

Equations (2.37)-( 2.39) represent the basic functional equation for resonant oscilla- 
tions in a closed tube. We can note two special cases. If iAg(p)/ is negligible compared 
to r then (2.38) is equivalent to the case where is an order-one constant. In par- 

rnA 
a = p + rn + E 2 r n 6  - €2mrg(p)  - ‘zTg2(p) , rn = 1,2,3.. . 

where 
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ticular for an ideal gas where r = i(y + 1) , and y is the ratio of specific heats, we 
reproduce the functional equation analysed extensively in Seymour & Mortell ( 1980) 
and Mortell & Seymour (1979). In the second case r = 0, the undisturbed state is 
on the transition line and equations (2.37),(2.38) are mathematically similar to the 
functional equation derived by Seymour & Mortell (19733) for resonant oscillations 
in an open tube. 

3. Small-rate approximation: periodic response 
The derivation of the functional equations (2.37)-(2.39) makes no assumption 

regarding the acceleration rate of the evolving signal: as such it represents a small- 
amplitude (. B l), finite-rate evolution equation for the signal. A long-time-periodic 
response is derived by an expansion in the small rate limit (c2mdg/dsl d 1. Equation 
(2.38) then implies that 

g(m> = g(B) + .2m(6 - Fg(B) - +k2(P))g’(a” + W2mg’)1 (3.1) 
and then equation (2.37) can be approximated by the ordinary differential equation 

dg ( s )  _ _  1 dh (s + m/2) , 6 = A - -  [+fflg2(r)dr. (3.2) 
2 ds (Fg(s) + iAg2(s) - 6)z = 

Periodic solutions, g(s+m) = g(s), of (3.2) are sought which satisfy the mean condition 

g(r)dr = 0. rm (3.3) 

Solutions of equation (3.2),(3.3) describe the periodic signal on the closed boundary 
x = 0. In the analysis that follows we consider specifically the resonance m = 1 and 
the applied forcing frequency h(s) = f sin(2ns). 

Again we note two special cases of (3.2),(3.3). When r # O,A = 0 then (3.2) 
describes steady-state resonant oscillations in a closed tube for an ideal gas. The 
results of Chester (1964) indicate the existence of a resonance frequency band where 
shock waves occur in the flow and outside which the wave profile is continuous. 
The second case occurs when I;  = O,A # 0 and arises in the context of ideal 
gas oscillations in an open tube, see Jimenez (1973), Seymour & Mortell (1973b), 
Chester (1981), Chester & Moser (1982). In contrast to the closed tube case, narrow 
compression and expansion regions occur in the signal. In Chester (1981) and 
Chester & Moser (1982) the influence of dissipation on the signal is also investigated. 

In the analysis that follows we distinguish between integral curves of (3.2) (now 
with m = 1, h = f sin(2ns)) and the physical signal which must satisfy an additional 
mean constraint. The integral curves of (3.2) satisfy 

3 r g 2  + (Ig3 + sin(2ns) - 66g = Q, s E [#, # + 11, (3.4) 
where Q is a constant. Clearly an integral curve which is periodic and satisfies the 
mean condition (3.3), with m = 1, can represent the physical signal. When no such 
curve exists a signal can still be constructed composed of disjoint integral curves - 
the signal will include discontinuities. To determine the strength and position of these 
discontinuities we impose the condition that they propagate as periodic shocks in the 
flow. From equation (2.23) we see that shock discontinuities propagate with speeds 
f u  . Integration of (2.23) is possible assuming that there is negligible distortion of 
the signal in the periodic state. If we consider a shock of constant strength [ P I ]  = [g] 
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as measured on the boundary x = 1 then this shock will return to the boundary after 
a time T given (on integrating equation (2.23)) by 

(3.5) 

Periodicity requires that T = l / t o  and hence that the average perturbed shock speed 
is 

I 

fi2 := 1 u2(/?)dB = A .  (3.6) 

This in turn implies, from (2.23), that a shock discontinuity [g] satisfies 

3 F [ g 2 ]  + A[g3] - 6S[g] = 0, 6 = d - - L O L '  g2(s)ds. (3.7) 

In other words physical discontinuities can only be constructed from integral curves 
that have the same Q values. In addition we require that the discontinuous signal can 
be imbedded in the evolution equations (2.37),(2.38) as a stable periodic flow. For a 
stable imbedding of a periodic discontinuity located at characteristic B = Bs on x = 0 
the travel times of wavelets f b  = lim,,,of(P3 - h)  and f a  = limh,of(Ps + h)  denoted 
by Tb and T, must satisfy the inequality 

1 
Tb > - > T,. 

0 

Using (2.38) we then have the inequality 

LO" f2(s)ds (3.9) f'(s)ds > A > Tgh + -gi + - A 
2 

- A  

which can be written in the form 

where c u . b  is the average perturbed characteristic speed 
4+ ' 

f u . h  := ca,h(~~)ds (3.11) 

with Ca,b given by equation (2.17). This is clearly the requirement that the average 
shock speed lies between the the average wave speeds for the signal entering the 
shock. The possibility of sonic shocks for equation (3.2), representing average sonic 
conditions for the propagating signal through one traversal of the wavetube will 
introduce equalities into (3.10). From our discussion in $2 we deduce that if A > 0 
the average speed ordering condition is now 

cu > fi f b ,  (3.12) 

i.e. T, 3 1 > T,, whereas if A < 0 then 

c a  3 fi > c b  (3.13) 

i.e. Tb > 1 3 T,. 
It is possible for discontinuities in (3.2) to satisfy the average speed ordering 

conditions (3.12),(3.13) and yet violate the local ordering conditions (2.24),(2.25). 
Again this is usefully interpreted in terms of permissible discontinuities. We illustrate 
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FIGURE 1. Shock jump discontinuities for A < 0. 

this for the case A < 0. On the boundary x = O,b, is given by the representation (2.27) 
with F ( P )  = G(a).  For a discontinuity to be locally stable there is the requirement that 
the functions G, = ( A / r ) g a  and Gb = ( L i / r ) g b  must lie between the lines G,  = Gb 
and Gb = -5Ga - 3. In contrast a stable periodic discontinuity of (3.2) must lie 
between G, = Gb and Gb = -2G, - 3. These regions are shown in figure 1. The 
shaded regions represent discontinuities described by G,, Gb. Regions 1, 2, 5 represent 
permissible shock jump discontinuities satisfying (2.25). Regions 1-4 combine to 
represent admissible discontinuities for (3.2). We highlight the fact that when Gb > 
-1/2 or Gb < -3 then region 3 or 4 will represent discontinuities of (3.2) allowed 
by (3.13) but which are actually physically unstable discontinuities violating (2.25). 
An imposed discontinuity of this strength on the boundary would instantaneously 
disintegrate to form a sonic shock and wave fan combination propagating into the 
interior of the tube. That a discontinuity of this strength is predicted for equation 
(3.2) is due to the effect of refocusing of the wave fan as it goes through one traversal 
of the tube. 

Equation (3.2) with r = 0 has been derived in the different, though related, problem 
of a classical resonating gas in an open tube and it is important to highlight the 
differences between the two problems for this particular limiting case. These differences 
relate particularly to the inclusion of shock discontinuities which is a central concern 
of this paper. In the classical open tube problem no shock theory can be used to 
generate a shock condition equivalent to equation (3.10). This point is clearly made in 
Jimenez (1973). The assumption of isentropic flow for the equations of motion when 
used to O(c3)  is inconsistent with shocks which produce an entropy jump also at 
this same order. As a consequence discontinuities in the classical open tube problem 
must be understood in terms of refocused wave fans - the refocusing due to the 
imposed open boundary condition. This inconsistency does not arise for BZT-fluids 
as the entropy jump across the shock occurs at a higher order. Discontinuities when 
they occur represent genuine shock behaviour for which a shock theory has been 
developed. A more general model equation for the open tube problem which includes 
dissipation is used in Chester (1981) not only to provide a structure to the expansive 
discontinuities of (3.2) but more importantly to actually locate their positions. In the 
present context of dense gases in closed tubes a shock theory has been used to locate 
the discontinuities of (3.2). This theory leads to condition (3.10) for the shock speeds. 
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The inclusion of dissipative effects in the form of thermoviscous diffusivity provides 
a structure then to the already determined shock discontinuities as we now show. 

4. Dissipative effects 
Thermoviscous effects can readily be included in our analysis through a straightfor- 

ward application of multiple scaling (see Cramer & Kluwick 1984 for an application 
to unidirectional motion). The signal on the boundary x = 0 is given by the long-time 
evolution equation 

71 d2g cos(27c.t) = v-, (4.1) 
dt2 

where 

The signal evolves on the long timescale z = e2t but is periodic in the fast scale 
t = s. Equations (4.1),(4.2) constitute a small-amplitude, small-rate approximation. 
The coefficient v represents an effective acoustic diffusivity given by 

g(t + 1) = d t ) .  ( 4 4  

where /io and po denote first and second viscosities, To temperature, Pr  the Prandtl 
number and Po the coefficient of thermal expansion, all evaluated in the mean 
reference state. In the inviscid limit v -+ 0 equation (4.1) could also be constructed as 
a two-variable expansion of the functional equation (2.37),(2.38). 

The steady-state limit of (4.1) is given by 

(4.4) (Tg + ?g A 2  - A + 5 g2(r)dr) + 71 cos(2nt) = v-, d2g 
dt2 

where we look for periodic solutions satisfying a zero mean condition. 
To simplify the subsequent analysis we introduce the transformation 

lA I A 
r '  A 

y = -t G = = g  (4.5) 

following Cramer & Kluwick (1984). On substituting (4.5) into (4.4) we have the 
ordinary differential equation 

dG d2 G 
( i G 2  + G - 2)- + A  cos(27cy) = c7, 

dY dy- 
where 

and 

(4.6) 

Again we look for periodic solutions of (4.4) satisfying a zero mean condition. 
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The variables A,A,V can be used to identify a family of similar solutions. From 
our discussion of shock discontinuities we need the additional mild constraint that 
similar flows will have the same sign of A. 

From (4.8) we see that the parameter A describes the dependence of the solution on 
the ratio of the nonlinear parameters A / r  and so is determined by the thermodynamic 
state of the undisturbed fluid. In the limit as A -+ co solutions of (4.1) are obtained 
with r = 0. The classical gas solution arises in the limit A --+ 0 . The parameter i 
gives an effective detuning parameter and includes the influence of wave interaction. 

Numerical solutions of (4.6) are presented in $5. At this point we give, for 
completeness, an analysis of the weak shock structure which is identical to that given 
in Cramer & Kluwick (1984). 

We introduce the variables 

(4.10) 

and choose R(t0) = i(Ga + Gb) where to is the location of the jump discontinu- 
ity as given by inviscid theory. On assuming that within the shock the applied 
forcing is constant we can show that R satisfies the differential equation (5.4) in 
Cramer & Kluwick (1984) and has the profile given by 

, B > 1 (4.11) 
B2 - 1 

or 

B = 1, 
- 1 l - R  R 
t = -ln (---) - ___ 

2 1 + R  1 + R '  (4.12) 

where B = (6/[G]) (1 + ( i ( G a  + Gb))). The case B = 1 corresponds to sonic conditions 
and it is seen from (4.12) that the shock structure is algebraic rather than exponential 
in character. Within the context of resonant oscillations in open tubes similar 
observations have been made, see Chester (1981). 

5. Analytic and numerical results 
In the limit V -+ 0 equation (4.6) models steady-state inviscid flow. In this limit we 

analyse the integral curves of (4.6) to constuct a steady-state signal. We require that 
G is single valued and satisfies a zero mean condition. Equation (4.6) has singular 
points at y = 1/4,3/4 with values of G satisfying 

i~~ + G - i = 0. (5.1) 
It is clear from (5.1) that for /1 < -1/2 there are no singular points and that from (4.6) 
the corresponding integral curves have bounded derivatives. In this case all integral 
curves are periodic and there exists a unique curve which satisfies the zero mean 
condition and represents a physical signal. For A > -1/2 saddle singularities occur at 
the points (1/4+n, -1 +(1 + 2A)li2), (3/4+n, -1-(1 + 2i)'I2), and centres are located 
at (1/4 + n, -1 - (1 + 2/1)1/2), (3/4 + n, -1 + (1 + 2i)1/2) where n = 0, +1, f2 , .  . .. 

The role of the integral curves emanating from the saddle singularities in con- 
structing discontinuous solutions can be understood in terms of the critical points 
of the functional mapping (2.37),(2.38). Saddle singularities of (4.6), with V = 0, 
represent wavelets in the signal which complete one cycle of the tube in a period 
of the piston. When the steady-state solution includes these saddle points then the 
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long-time behaviour can be described in terms of an initial signal emanating from 
a vanishingly small neighbourhood of these fixed points. This is the case in figures 
2(a) and 2(b) where inviscid solutions are constructed from the integral curves of 
(4.6). The discontinuities inserted satisfy the speed ordering conditions (3.13) and the 
discontinuous solution has zero mean. Figures 2(a)-2(d) give representative solutions 
for various values of the similarity variables A and 1. The qualitative differences 
exhibited correspond to identifiable regions in the ( A ,  A) parameter space as indicated 
in figure 3. A resonant band is indicated in figure 3 including the regions 1 4  in which 
the solutions involve shock discontinuities. For a particular fluid the parameter A is 
determined from (4.8). Then both the frequency width of the resonant shock band 
and the qualitative features of the solution as the effective frequency A is varied can 
readily be identified. 

For small values of A we expect the solutions to exhibit similar qualitative features 
to a classical gas. This is confirmed in figure 2(a) where the solution is constructed 
from separatrices that connect the saddle points. Figure 2(a) gives the structure 
of the signal for values of A and 1 in region 1 in figure 3. All results are for 
A < 0. For purposes of discussion we will refer to discontinuities which decrease 
with y as compression shocks and discontinuities which increase with y as expansion 
shocks. There is a single compression discontinuity inserted into the separatrices of 
the saddle points. Figure 2(b) describes solutions in region 2 of figure 3. This region 
is distinguishable from region 1 by a qualitative change in the integral curves of (4.6). 
However shock solutions can still be constructed from saddle point integral curves 
and the solution profiles are similar to those in figure 2(a). Regions 1 and 2 of figure 
3 then represent parameter regimes where the signal supports a single compressive 
discontinuity. If  we hold 2 fixed and increase A the compressive discontinuity becomes 
sonic on the boundary with region 3. An expansion shock then forms and the signal 
within region 3 is characterized by two shocks one of which (the compression shock) 
is sonic (T ,  = 1). A representative signal is plotted in figure 2(c). If we continue to 
increase A holding ,? fixed the solution enters the parameter region 4 of figure 3. The 
expansion shock now also becomes sonic as seen from figure 2(d) .  Critical points of 
(4.6) are not involved in construction of the solution. The solutions in this parameter 
region qualitatively resemble those discussed in Chester (1981) for a classical gas in 
an open tube. 

We have discussed essentially how the signal responds to increasing values of the 
parameter A for fixed i. We now investigate how the signal structure varies with A 
when A is held fixed. In figure 4(a) we plot the wave amplitude of the signal as a 
function of A for A = 1. This response curve is comparable to response curves for a 
classical resonating gas, see for example Seymour & Mortell (1973~).  In figure 4(b) 
we plot the imposed driving frequency (actually the scaled frequency Ad/r2)  against 
the effective frequency A. The effect of the interaction term in (4.7) is primarily seen 
in a shift of the resonance peaks in figure 4(a). As one might expect the solution 
profiles are similar to the classical gas and this is borne out in figure 5 where the 
solution profile is plotted for a range of A. As A decreases from A = 0.6 to 2 = -0.6 
the initially continuous solution enters regions 1 and 2 of figure 3 where a single 
compressive discontinuity is formed. On detuning through the resonant band, the 
shock discontinuity moves relative to the phase of the piston until eventually a 
continuous integral curve satisfies the mean condition. For frequencies away from 
resonance the continuous signal is well approximated by a linear theory. Care must be 
taken in the interpretation of these profiles. For values of i < 0.11903 (the frequency 
A = 0.11903 is labelled in figure 4a with an open circle) the solution discontinuity 
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G 

0.5 1 .o 1.5 2.0 
Y 

FIGURE 2. Signal for A, 1 values in the regions shown in figure 3 ( a )  region 1, (b)  region 2, 
(c) region 3, ( d )  region 4. 
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FIGURE 3. Resonant shock band. 
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FIGURE 4. (a) Signal amplitudes for A = 1. Maximum and minimum amplitudes (-), shock 
amplitudes (- - -). (h)  Variation of A A / F *  with /2 for A = 1.0. 

violates the local speed ordering conditions, namely (2.25), and the discontinuity lies 
in region 3 of figure 1. For these frequencies the discontinuities should be interpreted 
as sonic shock/fan regions of rapid transition. 

As A increases the situation becomes more complicated. In figures 6-8 the results 
are given for A = 5. A transition from one shock to two shocks as 1 decreases 
through the resonant frequency band is shown in figure 7. This coresponds to a 
transition through regions 1, 3 and 4 of figure 3 . The transition occurs through 
the single compressive shock becoming sonic at a point on the boundary between 
regions 1 and 3. The expansion shock formed as 3, continues to decrease in turn 
becomes sonic on entering region 4. The strength of the two shocks decay as A is 
further detuned away from resonance. Eventually at ;1 = -0.5 a continuous profile 
can be constructed. The resonant response diagram is given by figure 6(a) where the 
shock amplitudes are indicated. Again in interpreting the discontinuities constructed 
we note that the compression shock lies outside the local shock inequalities given by 
(2.25) for i < 0.7478 - this frequency is marked by a closed circle in figure 6(a) .  The 
expansion shock also violates (2.25) for -0.0022 < I < 0.158 - a frequency interval 
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,I = 0.6 ,I = 0.3 

A = O  A =  0.3 

,I = 0.6 
FIGURE 5.  Signal profiles for A = 1.0. 

marked by open circles. For frequencies where (2.25) is violated the discontinuity 
models what is locally a sonic shock/fan transition. The relationship between the 
effective frequency and the actual forcing frequency is indicated in figure 6(b). The 
dotted curves relate to solutions found in the shock regions 1, 3 and 4 of figure 3. In 
contrast to figure 4(b) ( A  = 1) there exist multiple solutions with different A values for 
a given A .  In particular an acceptable continuous solution branch exists to replace 
solutions in region 3 of figure 3. To investigate this further we solve equation (4.6) to 
determine the viscous profiles for 5 = 0.02. Periodic solutions satisfying a zero mean 
were constructed using a variable-order, variable-step size, finite difference algorithm. 
For each i the solution was constructed using a continuation algorithm from an 
initial approximation given by linear theory for A large and positive. This could 
alternatively be interpreted as a slow passage through resonance formulation. These 
viscous results are superimposed on the inviscid curves of figure 6(b) as indicated 
and in figures 8(a) and 8(b) we compare viscous and inviscid profiles for A = 5,  and 
V = 0.02. In figure 8(a) (A = 0.75) we have essentially a classical shock structure 
with slight deviation from a Taylor profile. In figure 8(b) (A = -0.25) both shocks 
are sonic and the algebraic behaviour of the shock structure is evident as predicted 
by equation (4.12). There is an obvious phase shift in the viscous structure from the 
inviscid position. 

= 0, A # 0. The trans- 
formations (4.5) are singular under this limit and so we revert to equation (3.2) with 

We conclude with an examination of the limiting case 
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(a )  Signal amplitudes for A = 5.0. 

+) ( V  = 0.02). 
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FIGURE 7. Signal profiles for A = 5.0. 
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FIGURE 8. Comparison of viscous and inviscid profiles for A = 5.0: (a) I = 0.75, (b)  I = -0.25 
Inviscid signal (- - -), viscous signal (-). 

m = 1, h = sin(2ns), i.e. 

In figure 9(a) we give the response curves for A = 1. When 6 is in the interval 
(0, (1/2)5'3) the signal is discontinuous and consists of two sonic shocks of compres- 
sion and expansion. Outside this interval the solution is continuous. At 6 = (1/2)5/3 
the limiting solution as 6 is approached from below is different to that when 6 is 
approached from above. This point was made in Chester (1981) analysing a similiar 
equation arising in the context of a resonating classical gas in an open tube. This 
is reflected in the response curves of figure 9(a) and in the plot of A against 6 in 
figure 9(b). Within the context of the model equations presented here the effect of the 
interaction terms is to make available over most of the frequency range a continuous 
solution replacing a possible shock solution. The physical frequency range where 
shocks occur is now extremely small. In figure 10 we give the solution profiles for a 
range of 6. The resonant band is characterized by sonic shocks. Outside the band the 
solution is well approximated by linear theory. 

6. Conclusions 
Resonant gas oscillations have been the subject of intensive study, both from 

a theoretical and an experimental perspective. This paper provides a small-rate 
theory for resonant gas oscillations of BZT-fluids. Existing work on BZT-fluids has 
been concerned exclusively with unidirectional waves in infinite media. This paper 
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FIGURE 10. Signal profiles for equation (5.2). 
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represents an extension to waves in finite media where the effect of wave interaction 
must be included. As such it should provide a basis for future experimental and 
theoretical investigations. 

The theory predicts the existence of a resonant frequency band within which 
expansion and compression shocks are generated in the signal profiles. An ability to 
control the strength of shocks produced by frequency detuning, a feature important 
to the experimentalist, is demonstrated. In contrast to the classical gas case there 
is an inherent limit on the strength of discontinuities that can propagate within the 
signal. Within the context of the small-rate theory developed here, discontinuities 
consistent with the theory (arising from averaged shock conditions) may in fact then 
exceed strengths sustainable by the propagating signal. These discontinuities are 
interpreted as approximations to sonic shock and refocused wave fan combinations. 
Experimental evidence of wave fan disintegration and refocusing within the interior 
of the gas tube would be expected from this interpretation. 

The effective frequency of the resonating system is dependent through wave inter- 
action on the the resonating signal. This results in applied frequency intervals where 
multiple solutions coexist. That not all these solutions would be observed experimen- 
tally is demonstrated in a simple numerical experiment where the resonating system 
is detuned through the resonant band. 
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